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What I hope to get across

An operationally defined problem about measurements

Question: Are certain outcome sequences impossible?

Two versions:

Quantum → algorithmically undecidable
Classical → algorithmically decidable

What it means:

Statement about the complexity of the mathematical theory
of quantum mechanics
Arguably the strongest complexity theoretic
quantum/classical separation imaginable (almost)
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Undecidability
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Turing machines

input x

5

Turing Machine ]t
0, 1 7→ 0, 2,→
1, 2 7→ 0, h,←
1, 5 7→ 0, 1,→

...

Input x and output y are (bit)
strings (countable).

The set of Turing machines is
countable (Turing Number ]t ∈ N).

Turing Machine computes a
function f : X → Y iff it halts and
y = f(x) for each x ∈ X.

Universal model of computation

Question: Are all functions f : N→ {0, 1} computable?
Answer: No!
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The halting problem

Halt(x)

Halt(x) =

{
true if TM ]x halts on input x

false if TM ]x does not halt on input x

Assume Halt(x) is computable, then there must be a Turing machine (with
Turing number ]f) which behaves according to the following program:

f(x)

if Halt(x) then
loop forever

else
halt

endif

What is f(]f)?

�



Undecidability as a genuine quantum property | Undecidability | Undecidability and the halting problem 6 / 20

The halting problem

Halt(x)

Halt(x) =

{
true if TM ]x halts on input x

false if TM ]x does not halt on input x

Assume Halt(x) is computable, then there must be a Turing machine (with
Turing number ]f) which behaves according to the following program:

f(x)

if Halt(x) then
loop forever

else
halt

endif

What is f(]f)?

�



Undecidability as a genuine quantum property | Undecidability | Undecidability and the halting problem 6 / 20

The halting problem

Halt(x)

Halt(x) =

{
true if TM ]x halts on input x

false if TM ]x does not halt on input x

Assume Halt(x) is computable, then there must be a Turing machine (with
Turing number ]f) which behaves according to the following program:

f(x)

if Halt(x) then
loop forever

else
halt

endif

What is f(]f)?

�



Undecidability as a genuine quantum property | Undecidability | Undecidability and the halting problem 7 / 20

Turing undecidability

A problem is undecidable iff there is no algorithm
solving each instance of the problem.
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Measurement occurrence problem



Undecidability as a genuine quantum property | Measurement occurrence problem | Operational definition 9 / 20

A problem from measurement theory
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A problem from measurement theory

. . .

w1 w2 w3 . . .

“never occurs”

wn

Measurement occurrence problem (MOP)

Given a description of a measurement device decide whether
there exists a sequence of outcomes w1, . . . , wn that can never
occur, regardless of the input.
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QMOP vs. CMOP

QMOP

CMOP

state: ρ = ρ† ≥ 0,Tr ρ = 1

~p ≥ 0,

d∑
i=1

pi = 1

device: {Aj}Kj=1 ⊂ Qd×d {Qj}Kj=1 ⊂ (Q+
0 )d×d

K∑
j=1

A†jAj = 1
K∑
j=1

Qj is stochastic

on outcome j: ρ 7→
AjρA

†
j

Tr[AjρA
†
j ]

~p 7→ Qj~p∑d
i=1(Qj~p)i

Prob(w1, . . . , wn) = Tr[A†w1
. . . A†wn

Awn . . . Aw1ρ]

d∑
i=1

(Qwn . . . Qw1~p)i
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When is w1, . . . wn an impossible outcome sequence?

QMOP:

Prob(w1, . . . , wn) = Tr[A†w1
. . . A†wn

Awn . . . Aw1ρ] = 0 ∀ρ
⇐⇒ A†w1

. . . A†wn
Awn . . . Aw1 = 0

⇐⇒ Awn . . . Aw1 = 0

CMOP:

Prob(w1, . . . , wn) =

d∑
i=1

(Qwn . . . Qw1~p)i = 0 ∀~p

⇐⇒ Qwn . . . Qw1 = 0

Remember: different restrictions on Aj and Qj!
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Results
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Quantum vs. classical separation

Theorem 1 (Undecidability)

The quantum measurement occurrence problem (QMOP) for K ≥ 9 and
d ≥ 15 is undecidable.

Theorem 2 (Decidability)

For any K and d, both QMOP with Kraus operators Aj with
non-negative entries and CMOP are decidable.

[1] J. Eisert, M. P. Mueller, and C. Gogolin, Phys. Rev. Lett. 108, 260501 (2012)
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Proof idea for decidability

“Proof” of Theorem 2:

For any entry wise non-negative matrix M define its indicator matrix

M ′a,b :=

{
0 if Ma,b = 0

1 if Ma,b > 0.

and let M ′ ∗N ′ := (M ′N ′)′, then

Mwn . . .Mw1 = 0⇐⇒M ′wn
∗ . . . ∗M ′w1

= 0.

Moreover:

Mwn . . .Mw1 = 0⇐⇒ ∃{ij}Jj=1 with J ≤ 2(d
2) :M ′iJ ∗. . .∗M

′
i1 = 0

Why? Because all partial products in the shortest sequence must be
different and the number of d× d binary matrices is 2(d

2).

Ergo: Check all words M ′wn
∗ . . . ∗M ′w1

of length ≤ 2(d
2).
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Proof idea for decidability

“Proof” of Theorem 2:

For any entry wise non-negative matrix M define its indicator matrix

M ′a,b :=

{
0 if Ma,b = 0

1 if Ma,b > 0.

and let M ′ ∗N ′ := (M ′N ′)′, then

Mwn . . .Mw1 = 0⇐⇒M ′wn
∗ . . . ∗M ′w1

= 0.

Moreover:

Mwn . . .Mw1 = 0⇐⇒ ∃{ij}Jj=1 with J ≤ 2(d
2) :M ′iJ ∗. . .∗M

′
i1 = 0

Why? Because all partial products in the shortest sequence must be
different and the number of d× d binary matrices is 2(d

2).

Ergo: Check all words M ′wn
∗ . . . ∗M ′w1

of length ≤ 2(d
2).
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Undecidability due to destructive interference

Kraus operators Aj in the QMOP can have negative (complex) entries!

“Proof” of Theorem 1:

Reduction to the MMP:

Matrix mortality problem (MMP) is undecidable [2, 3]

It is undecidable whether the semi-group generated by {Mi}Ki=1 ⊂ Zd×d
(with K ≥ 8 and d ≥ 3) contains the zero matrix.

Find clever encoding of the MMP into the QMOP such that

∃wn, . . . , w1 : Awn . . . Aw1 = 0⇐⇒ ∃in′ , . . . , i1 : Min . . .Min′ = 0.

and which takes the restrictions on the Aj into account.
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Conclusions

An operationally defined problem about measurements

Question: Are certain outcome sequences in repeated
measurements impossible?

QMOP → Turing undecidable
CMOP → Turing decidable

What it means:

Destructive interference makes the quantum problem
undecidable.
Statement about the complexity of the mathematical theory
of quantum mechanics
Arguably the strongest complexity theoretic
quantum/classical separation imaginable
(almost: CMOP is NP-complete)



Undecidability as a genuine quantum property | Conclusions 18 / 20

Conclusions

An operationally defined problem about measurements

Question: Are certain outcome sequences in repeated
measurements impossible?

QMOP → Turing undecidable
CMOP → Turing decidable

What it means:

Destructive interference makes the quantum problem
undecidable.
Statement about the complexity of the mathematical theory
of quantum mechanics
Arguably the strongest complexity theoretic
quantum/classical separation imaginable
(almost: CMOP is NP-complete)



Undecidability as a genuine quantum property | Conclusions 18 / 20

Conclusions

An operationally defined problem about measurements

Question: Are certain outcome sequences in repeated
measurements impossible?

QMOP → Turing undecidable
CMOP → Turing decidable

What it means:

Destructive interference makes the quantum problem
undecidable.
Statement about the complexity of the mathematical theory
of quantum mechanics
Arguably the strongest complexity theoretic
quantum/classical separation imaginable
(almost: CMOP is NP-complete)



Undecidability as a genuine quantum property | Conclusions 18 / 20

Conclusions

An operationally defined problem about measurements

Question: Are certain outcome sequences in repeated
measurements impossible?

QMOP → Turing undecidable
CMOP → Turing decidable

What it means:

Destructive interference makes the quantum problem
undecidable.

Statement about the complexity of the mathematical theory
of quantum mechanics
Arguably the strongest complexity theoretic
quantum/classical separation imaginable
(almost: CMOP is NP-complete)



Undecidability as a genuine quantum property | Conclusions 18 / 20

Conclusions

An operationally defined problem about measurements

Question: Are certain outcome sequences in repeated
measurements impossible?

QMOP → Turing undecidable
CMOP → Turing decidable

What it means:

Destructive interference makes the quantum problem
undecidable.
Statement about the complexity of the mathematical theory
of quantum mechanics

Arguably the strongest complexity theoretic
quantum/classical separation imaginable
(almost: CMOP is NP-complete)



Undecidability as a genuine quantum property | Conclusions 18 / 20

Conclusions

An operationally defined problem about measurements

Question: Are certain outcome sequences in repeated
measurements impossible?

QMOP → Turing undecidable
CMOP → Turing decidable

What it means:

Destructive interference makes the quantum problem
undecidable.
Statement about the complexity of the mathematical theory
of quantum mechanics
Arguably the strongest complexity theoretic
quantum/classical separation imaginable
(almost: CMOP is NP-complete)



Undecidability as a genuine quantum property | References 19 / 20

References

Thank you for your attention!

−→ slides: www.cgogolin.de

[1] J. Eisert, M. Müller, and C Gogolin.
Quantum measurement occurrence is undecidable.
Physical Review Letters, 108(26):1–5, June 2012.

[2] Vesa Halava, Tero Harju, and Mika Hirvensalo.
Undecidability Bounds for Integer Matrices using Claus Instances.
Technical Report 766, TUCS Turku Center for Computer Science, April 2006.

[3] M S Paterson.
Unsolvability in 3 {\times} 3 matrices.
Stud. Appl. Math., (49):105–107, 1970.

http://www.cgogolin.de


Undecidability as a genuine quantum property | References 20 / 20

Making the result more physical

The QMOP asks

∃w1, . . . , wn : Prob(w1, . . . , wn) = 0.

The undecidability of the QMOP is stable in the sens that the question

∃w1, . . . , wn : Prob(w1, . . . , wn) < δ−n

is still undecidable, where δ > 1 is a simple function of ρ and the Kraus
Operators {Aj}Kj=1.
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