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Absence of thermalization = Introductory words

Old questions and new contributions

How do quantum mechanics and
statistical mechanics go together?
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Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[A 4] equilibrates, it equilibrates towards its time average
Tr[A ] = Tr[Avy] = Tr[Aw],
where w = Z TRV
k

(with m;, the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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1o — w is a pinching = w maximizes entropy.
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Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[A 4] equilibrates, it equilibrates towards its time average
Tr[A ] = Tr[Avy] = Tr[Aw],
where w = Z TRV
k

(with m;, the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

= Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Interesting open questions:

m Do we really need all (exponentially many) conserved
quantities?

m If not, then which?

m Does this depend on integrability of the model?

m What is the relation to the GGE?
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Thermalization is a complicated process

Q

Thermalization implies:
Equilibration [2, 4, 5]
Subsystem initial state independence [3]
Weak bath state dependence [6]
Diagonal form of the subsystem equilibrium state [7]
Gibbs state e =8 ¥ [5, 6]

[2] P. Reimann, PRL 101 (2008) 190403

[4] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
[5] J. Gemmer, M. Michel, and G. Mahler, Springer (2009)

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

[7] C. Gogolin, PRE 81 (2010) no. 5, 051127
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Thermalization and quantum integrability

There is a common belief in the literature [8, 9, 10, 11, 12] ...

Non-integrable = Thermalization
Integrable —> No thermalization

8] C. Kollath et. al PRL 98, (2007) 180601

[9] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98 (2007) 210405
[10] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452 (2008) 854

[11] M. C. Banuls, J. I. Cirac, and M. B. Hastings, arXiv:1007.3957

[12] M. Rigol, PRL 103, (2009) 100403
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Thermalization and quantum integrability

There is a common belief in the literature [8, 9, 10, 11, 12] ...

Non-integrable = Thermalization
Integrable —> No thermalization

. but there are problems.

[8] C. Kollath et. al PRL 98, (2007) 180601

[9] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98 (2007) 210405
[10] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452 (2008) 854

[11] M. C. Banuls, J. I. Cirac, and M. B. Hastings, arXiv:1007.3957
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Notions of (non-)integrability

A system is with n degrees of freedom is integrable if:

m There exist n (local) conserved mutually commuting linearly
independent operators.

There exist n (local) conserved mutually commuting algebraically
independent operators.

The system is integrable by the Bethe ansatz.
The system exhibits nondiffractive scattering.

The quantum many-body system is exactly solvable in any way.
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Notions of (non-)integrability

A system is with n degrees of freedom is integrable if:

m There exist n (local) conserved mutually commuting linearly
independent operators.

There exist n (local) conserved mutually commuting algebraically
independent operators.

m The system is integrable by the Bethe ansatz.

m The system exhibits nondiffractive scattering.

m The quantum many-body system is exactly solvable in any way.
" ...

And non-integrable otherwise?

Lack of imagination?
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Classical Liouville integrability

A system with n degrees of freedom is called integrable if it entails a
maximal set of n independent Poisson commuting constants of motion
and is called non-integrable otherwise [13].

[13] V. I. Arnold, Mathematical Methods Of Classical Mechanics (1989)
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Reminder on integrability in classical mechanics

Classical Liouville integrability

A system with n degrees of freedom is called integrable if it entails a
maximal set of n independent Poisson commuting constants of motion
and is called non-integrable otherwise [13].

Classical: Quantum:
m integrability = systematic solvable m always systematic solvable
and evolution on a n-torus and evolution on a d-torus
m qualitative question m quantitative question?
m thermalization = non-integrability = thermalization < non-integrability

thermalization <= non-integrability

[13] V. I. Arnold, Mathematical Methods Of Classical Mechanics (1989)
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Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [3]):

m Too little (geometric) entanglement in the energy
eigenbasis prevents initial state independence.

m This can happen even in non-integrable systems.

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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Result (Theorem 1 and 2 in [3]):

m Too little (geometric) entanglement in the energy
eigenbasis prevents initial state independence.
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The model:
Spin-1/2 XYZ chain with random coupling and on-site field.
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i=1 i=1




The model:
Spin-1/2 XYZ chain with random coupling and on-site field.

n n—1
H=> hiol + bi-5 "
i=1 i=1

Interesting open questions:
m What is the relation to Anderson localization?

m Can this also happen in translation invariant systems?
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Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [3]):

m Too little (geometric) entanglement in the energy
eigenbasis prevents initial state independence.

m This can happen even in non-integrable systems.
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no interaction arguments
Ho=HsN+10.4p

— Kinematic
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Structure of the argument

Classical level counting a
la Goldstein [14] with

no interaction

Hoy=H RN +1RR

_|_

Perturbation theory for
realistic weak coupling [6]
| #sB |l < kT

Typicality

— Kinematic
arguments

Equilibration |, Dynamic

results

[14] S. Goldstein, PRL 96 (2006) no. 5, 050403
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Conclusions

There is equilibration in closed quantum systems.

We can prove thermalization under quite natural assumptions.

Quantum mechanics implies a maximum entropy principle.

How is this related to the GGE and ETH?

Can we capture the intuition behind non-integrability in a
mathematically precise definition?

m How are non-integrability and thermalization related?
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