Absence of thermalization $1 \ / \ 19$

Absence of thermalization in non-integrable systems

Christian Gogolin, Arnau Riera, Markus Müller, and Jens Eisert

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin

Workshop "Many-Body Quantum Dynamics in Closed Systems" Barcelona September 7-9 2011

Old questions and new contributions

How do quantum mechanics and statistical mechanics go together?

^[1] M. Cramer, C. Dawson, J. Eisert, and T. Osborne, PRL 100 (2008) 030602

^[2] P. Reimann, PRL 101 (2008) 190403

^[1] M. Cramer, C. Dawson, J. Eisert, and T. Osborne, PRL 100 (2008) 030602

^[2] P. Reimann, PRL 101 (2008) 190403

$$\mathscr{H} = \mathscr{H}_S \otimes \mathbb{1} + \mathscr{H}_{SB} + \mathbb{1} \otimes \mathscr{H}_B$$

$$|\psi_t\rangle = e^{-i\mathcal{H}t} |\psi_0\rangle$$

$$A_t = \text{Tr}[A|\psi_t\rangle\langle\psi_t|]$$

$$\psi_t^S = \text{Tr}_B[|\psi_t\rangle\langle\psi_t|]$$

System

"Bath"

^[1] M. Cramer, C. Dawson, J. Eisert, and T. Osborne, PRL 100 (2008) 030602

^[2] P. Reimann, PRL 101 (2008) 190403

$$|\psi_t\rangle = e^{-i\mathcal{H}t} |\psi_0\rangle$$

$$A_t = \text{Tr}[A|\psi_t\rangle\langle\psi_t|]$$

$$\psi_t^S = \text{Tr}_B[|\psi_t\rangle\langle\psi_t|]$$

Equilibration:

System

"Bath"

strong: equilibrated between t_1 and t_2 [1]

weak: equilibrated for most times [2]

^[1] M. Cramer, C. Dawson, J. Eisert, and T. Osborne, PRL 100 (2008) 030602

^[2] P. Reimann, PRL 101 (2008) 190403

$$|\psi_t\rangle = e^{-i\mathcal{H}t} |\psi_0\rangle$$

$$A_t = \text{Tr}[A|\psi_t\rangle\langle\psi_t|]$$

$$\psi_t^S = \text{Tr}_B[|\psi_t\rangle\langle\psi_t|]$$

Equilibration:

Thermalization:

System

"Bath"

strong: equilibrated between t_1 and t_2 [1]

weak: equilibrated for most times [2]

$$\psi_t^S \approx \rho_{\text{Gibbs}} \propto e^{-\beta \mathcal{H}_S}$$

- [1] M. Cramer, C. Dawson, J. Eisert, and T. Osborne, PRL 100 (2008) 030602
- [2] P. Reimann, PRL 101 (2008) 190403

Equilibration and a maximum entropy principle

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If $\mathrm{Tr}[A\,\psi_t]$ equilibrates, it equilibrates towards its time average

$$\overline{ ext{Tr}[A\,\psi_t]}= ext{Tr}[A\,\overline{\psi_t}]= ext{Tr}[A\,\omega],$$
 where $\omega=\sum_k\pi_k\psi_0\pi_k$

(with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

^[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

ities.

Maximul Time averaging

Theorem If $\operatorname{Tr}[A\,\psi]$

(with π_k maximize

Time averaging Maximui Theorem If $Tr[A \psi]$ $\psi_0 =$ (with π_k ities. maximize

Maximu

Time averaging

Theorem If ${
m Tr}[A\,\psi]$

(with π_k maximize

ities.

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

ities.

If $Tr[A\psi]$

(with π_k

maximize

Theorem 1 (Maximum entropy principle [3])

If $\mathrm{Tr}[A\,\psi_t]$ equilibrates, it equilibrates towards its time average

$$egin{aligned} \operatorname{Tr}[A\,\psi_t] &= \operatorname{Tr}[A\,\overline{\psi_t}] &= \operatorname{Tr}[A\,\omega], \end{aligned}$$
 where $\omega = \sum_k \pi_k \psi_0 \pi_k$

(with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

^[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If ${
m Tr}[A\,\psi_t]$ equilibrates, it equilibrates towards its time average

Interesting open questions:

- Do we really need all (exponentially many) conserved quantities?
- If not, then which?

(with

maxin

- Does this depend on integrability of the model?
- What is the relation to the GGE?

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

5

Thermalization and integrability

Thermalization is a complicated process

Thermalization implies:

- **1** Equilibration [2, 4, 5]
- Subsystem initial state independence [3]
- 3 Weak bath state dependence [6]
- Diagonal form of the subsystem equilibrium state [7]
- **5** Gibbs state $e^{-\beta} \mathcal{H}$ [5, 6]
 - [2] P. Reimann, PRL 101 (2008) 190403
 - [4] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
 - [5] J. Gemmer, M. Michel, and G. Mahler, Springer (2009)
 - [3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
 - [6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
 - [7] C. Gogolin, PRE 81 (2010) no. 5, 051127

Thermalization and quantum integrability

There is a common belief in the literature [8, 9, 10, 11, 12] ...

```
Non-integrable \Longrightarrow Thermalization
Integrable

⇒ No thermalization
```

^[8] C. Kollath et. al PRL 98, (2007) 180601

^[9] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98 (2007) 210405

^[10] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452 (2008) 854

^[11] M. C. Banuls, J. I. Cirac, and M. B. Hastings, arXiv:1007.3957

^[12] M. Rigol, PRL 103, (2009) 100403

Thermalization and quantum integrability

There is a common belief in the literature [8, 9, 10, 11, 12] ...

```
Non-integrable \Longrightarrow Thermalization

⇒ No thermalization

Integrable
```

... but there are problems.

- [8] C. Kollath et. al PRL 98, (2007) 180601
- [9] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98 (2007) 210405
- [10] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452 (2008) 854
- [11] M. C. Banuls, J. I. Cirac, and M. B. Hastings, arXiv:1007.3957
- [12] M. Rigol, PRL 103, (2009) 100403

Notions of (non-)integrability

A system is with n degrees of freedom is integrable if:

- There exist n (local) conserved mutually commuting linearly independent operators.
- \blacksquare There exist n (local) conserved mutually commuting algebraically independent operators.
- The system is integrable by the Bethe ansatz.
- The system exhibits nondiffractive scattering.
- The quantum many-body system is exactly solvable in any way.

A system is with n degrees of freedom is integrable if:

- There exist n (local) conserved mutually commuting linearly independent operators.
- There exist n (local) conserved mutually commuting algebraically independent operators.
- The system is integrable by the Bethe ansatz.
- The system exhibits nondiffractive scattering.
- The quantum many-body system is exactly solvable in any way.
-

And non-integrable otherwise?

Notions of (non-)integrability

A system is with n degrees of freedom is integrable if:

- There exist n (local) conserved mutually commuting linearly independent operators.
- \blacksquare There exist n (local) conserved mutually commuting algebraically independent operators.
- The system is integrable by the Bethe ansatz.
- The system exhibits nondiffractive scattering.
- The quantum many-body system is exactly solvable in any way.

And non-integrable otherwise?

Lack of imagination?

Reminder on integrability in classical mechanics

Classical Liouville integrability

A system with n degrees of freedom is called integrable if it entails a maximal set of n independent Poisson commuting constants of motion and is called non-integrable otherwise [13].

^[13] V. I. Arnold, Mathematical Methods Of Classical Mechanics (1989)

Reminder on integrability in classical mechanics

Classical Liouville integrability

A system with n degrees of freedom is called integrable if it entails a maximal set of n independent Poisson commuting constants of motion and is called non-integrable otherwise [13].

Classical:

■ integrability ⇒ systematic solvable and evolution on a n-torus

Quantum:

always systematic solvable and evolution on a d-torus

Reminder on integrability in classical mechanics

Classical Liouville integrability

A system with n degrees of freedom is called integrable if it entails a maximal set of n independent Poisson commuting constants of motion and is called non-integrable otherwise [13].

Classical:

- integrability ⇒ systematic solvable and evolution on a n-torus
- qualitative question

Quantum:

- always systematic solvable and evolution on a d-torus
- quantitative question?

Classical Liouville integrability

A system with n degrees of freedom is called integrable if it entails a maximal set of n independent Poisson commuting constants of motion and is called non-integrable otherwise [13].

Classical:

- integrability ⇒ systematic solvable and evolution on a *n*-torus
- qualitative question
- thermalization ⇒ non-integrability thermalization ≠ non-integrability

Quantum:

- always systematic solvable and evolution on a d-torus
- quantitative question?
- lacktriangle thermalization $\stackrel{?}{\Leftarrow}$ non-integrability

11 / 19

Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [3]):

- Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.
- This can happen even in non-integrable systems.

Result (Theorem 1 and 2 in [3]):

- Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.
- This can happen even in non-integrable systems.

Absence of thermalization in non integrable systems

The model:

 $\mbox{Spin-}1/2$ XYZ chain with random coupling and on-site field.

$$\mathcal{H} = \sum_{i=1}^{n} h_i \, \sigma_i^Z + \sum_{i=1}^{n-1} \vec{b}_i \cdot \vec{\sigma}_i^{\text{NN}}$$

13

14

Absence of thermalization in non integrable systems

The model:

14

|y|

Spin-1/2 XYZ chain with random coupling and on-site field.

$$\mathcal{H} = \sum_{i=1}^{n} h_i \, \sigma_i^Z + \sum_{i=1}^{n-1} \vec{b}_i \cdot \vec{\sigma}_i^{\text{NN}}$$

Interesting open questions:

- What is the relation to Anderson localization?
- Can this also happen in translation invariant systems?

Result (Theorem 1 and 2 in [3]):

- Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.
- This can happen even in non-integrable systems.

^[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

Proving thermalization

Two ways to prove thermalization

Two ways to prove thermalization

^[14] S. Goldstein, PRL 96 (2006) no. 5, 050403[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

Classical level counting à la Goldstein [14] with no interaction

$$\mathcal{H}_0 = \mathcal{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_B$$

Classical level counting à la Goldstein [14] with no interaction $\mathcal{H}_0 = \mathcal{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_B$

Perturbation theory for realistic weak coupling [6] $\|\mathcal{H}_{SB}\|_{\infty} \ll k_B T$

^[14] S. Goldstein, PRL 96 (2006) no. 5, 050403

^[14] S. Goldstein, PRL 96 (2006) no. 5, 050403 [6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

^[14] S. Goldstein, PRL 96 (2006) no. 5, 050403

^[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\|\mathcal{H}_{SB}\|_{\infty} \gg \operatorname{gaps}(\mathcal{H}_{0})$$

$$\|\mathcal{H}_{SB}\|_{\infty} \ll k_{B}T \ll \Delta$$

$$\vdash \Delta$$

$$\vdash \Delta$$

$$\vdash E$$

 \implies "Theorem" 2 (Theorem 2 in [6])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

^[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\|\mathcal{H}_{SB}\|_{\infty} \gg \operatorname{gaps}(\mathcal{H}_{0})$$

$$\|\mathcal{H}_{SB}\|_{\infty} \ll k_{B}T \ll \Delta$$

$$E$$

$$\downarrow \Delta$$

$$\downarrow \Delta$$

$$\downarrow E$$

$$\downarrow \Delta$$

$$\downarrow E$$

$$\downarrow \Delta$$

$$\downarrow E$$

$$\downarrow A$$

 \implies "Theorem" 2 (Theorem 2 in [6])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

(Dynamic) All initial states $\psi_{\square,0}$ locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\| \mathcal{H}_{SB} \|_{\infty} \gg \operatorname{gaps}(\mathcal{H}_{0})$$

$$\| \mathcal{H}_{SB} \|_{\infty} \ll k_{B}T \ll \Delta$$

$$E \xrightarrow{\Delta} E$$

$$\implies$$
 "Theorem" 2 (Theorem 2 in [6])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

(Dynamic) All initial states $\psi_{\square,0}$ locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\| \mathcal{H}_{SB} \|_{\infty} \gg \operatorname{gaps}(\mathcal{H}_{0})$$

$$\| \mathcal{H}_{SB} \|_{\infty} \ll k_{B}T \ll \Delta$$

$$E$$

$$\downarrow \Delta$$

$$\downarrow$$

 \implies "Theorem" 2 (Theorem 2 in [6])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

(Dynamic) All initial states $\psi_{\square,0}$ locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

^[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

■ There is equilibration in closed quantum systems.

- There is equilibration in closed quantum systems.
- We can prove thermalization under quite natural assumptions.

- There is equilibration in closed quantum systems.
- We can prove thermalization under quite natural assumptions.
- Quantum mechanics implies a maximum entropy principle.

- There is equilibration in closed quantum systems.
- We can prove thermalization under quite natural assumptions.
- Quantum mechanics implies a maximum entropy principle.
- How is this related to the GGE and ETH?

- There is equilibration in closed quantum systems.
- We can prove thermalization under quite natural assumptions.

17 / 19

- Quantum mechanics implies a maximum entropy principle.
- How is this related to the GGE and ETH?
- Can we capture the intuition behind non-integrability in a mathematically precise definition?

Absence of thermalization | Conclusions 17 / 19

- There is equilibration in closed quantum systems.
- We can prove thermalization under quite natural assumptions.
- Quantum mechanics implies a maximum entropy principle.
- How is this related to the GGE and ETH?
- Can we capture the intuition behind non-integrability in a mathematically precise definition?
- How are non-integrability and thermalization related?

Collaborators

Jens Eisert

Markus P. Müller

Absence of thermalization | References

19 / 19

References

Thank you for your attention!

- "Exact Relaxation in a Class of Nonequilibrium Quantum Lattice Systems",
 Phys. Rev. Lett. 100 (2008) 030602.

 [2] P. Reimann,
 "Foundation of Statistical Mechanics under Experimentally Realistic Conditions",
- Physical Review Letters 101 (2008) no. 19, 190403.

 [3] C. Gogolin, M. Müller, and J. Eisert,
- "Absence of Thermalization in Nonintegrable Systems", Physical Review Letters 106 (2011) no. 4, 040401.

[1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne,

- [4] N. Linden, S. Popescu, A. J. Short, and A. Winter, "Quantum mechanical evolution towards thermal equilibrium", Physical Review E 79 (2009) no. 6, 061103.
- [5] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermodynamics, vol. 784.
- [6] A. Riera, C. Gogolin, and J. Eisert, "Thermalization in nature and on a quantum computer",
- [7] C. Gogolin,
 "Environment-induced super selection without pointer states",
 Obtained Papiers 6.91 (2010) pp. 5.051377.
- C. Kollath, A. Läuchli, and E. Altman, "Quench Dynamics and Monequilibrium Phase Diagram of the Bose-Hubbard Model", Physical Review Letters 98 (2007) no. 18, 180601.
- [9] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, "Strongly Correlated Fermions after a Quantum Quench", Physical Review Letters 98 (2007) no. 21, 210405.
- [10] M. Rigol, V. Dunjko, and M. Olshanii, "Thermalization and its mechanism for generic isolated quantum systems", Nature 452 (2008) pp. 7399, 9557.
- [11] M. C. Banuls, J. I. Cirac, and M. B. Hastings, "Strong and weak thermalization of infinite non-integrable quantum systems", 1007.3967v1. http://www.citebase.org/abstract?id=oai:arXiv.org:1007.3967.
- [12] M. Rigol, "Breakdown of Thermalization in Finite One-Dimensional Systems", Physical Review Letters 103 (2009) no. 10. 100403.
- [13] V. I. Arnold, Mathematical Methods Of Classical Mechanics. Spriunger-Verlag, 1989.
- [14] S. Goldstein, "Canonical Typicality", Physical Review Letters 96 (2006) no. 5, 050403.